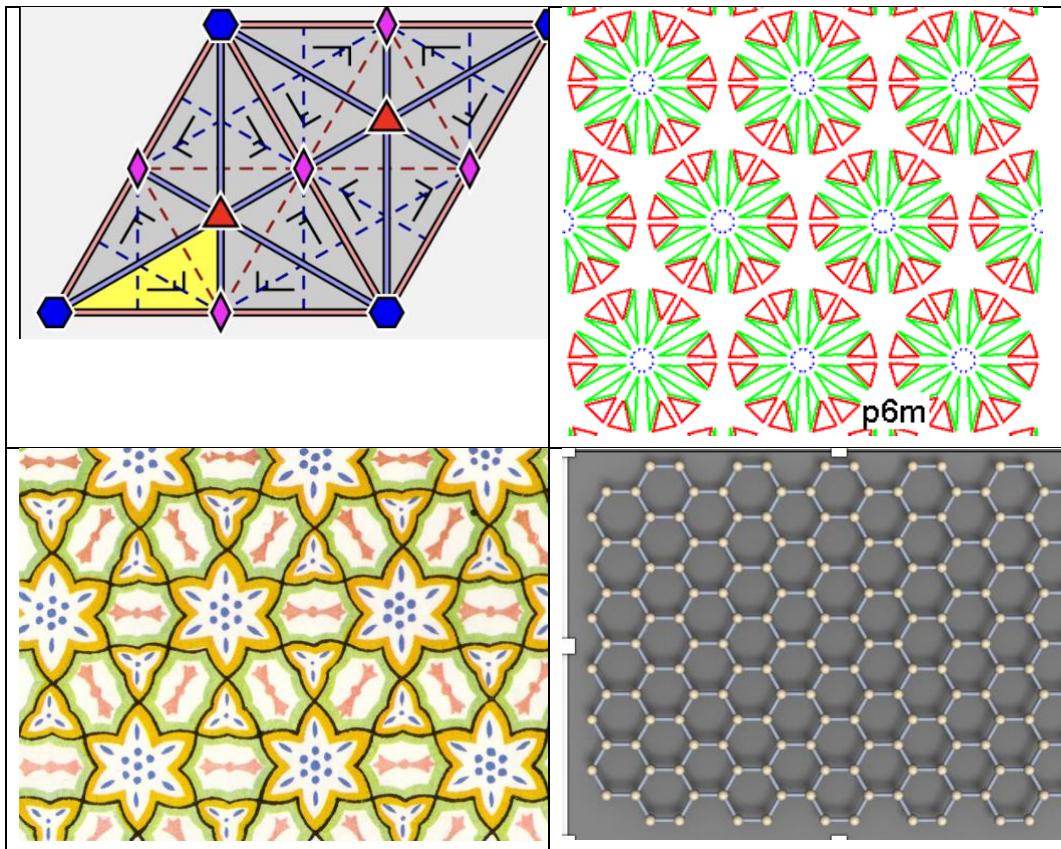


Week 03

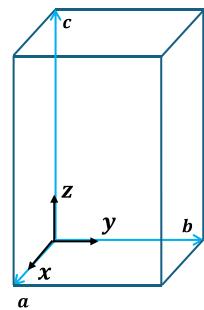

Crystallography
Symmetry

Exercise 1 : Answer these questions by true or false

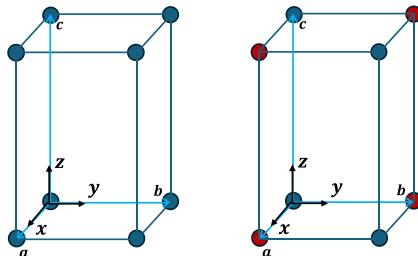
	True	False
1. In a crystal, a motif always has the same symmetry as the Bravais Lattice.	<input type="checkbox"/>	<input type="checkbox"/>
2. A motif with a 5-fold symmetry can be put in a Bravais lattice such that the resulting crystal has also a 5-fold symmetry.	<input type="checkbox"/>	<input type="checkbox"/>
3. A crystal with one atom per motif has the symmetry of its Bravais Lattice.	<input type="checkbox"/>	<input type="checkbox"/>
4. There are more point groups in 3D than there are point groups in 2D.	<input type="checkbox"/>	<input type="checkbox"/>
5. A material with only one type of atom in the motif has the same or more symmetries than a material with the same structure but atoms of different nature in the motif.	<input type="checkbox"/>	<input type="checkbox"/>

Exercise 2: Plane groups

Show that Graphene and the two wallpapers below belong to the same plane group symmetry $p6mm$. To demonstrate this, use the unit cell below (upper left hand side) on which all symmetry operations are indicated. Demonstrate the presence of the rotation axis, glide planes, mirror planes



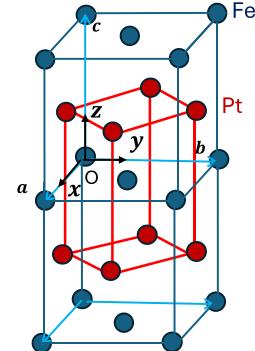
Exercise 3: Point groups in 3D


3a. We consider the tetragonal primitive lattice shown on the schematic.

This motif of a rectangular parallelepiped has a point group symmetry noted with: $4/m2/m2/m$. This means that there is a series of operation symmetries that leaves it unchanged, and notably an axis with a 4-fold symmetry, a mirror symmetry perpendicular to this axis, and several similar configurations with two-fold symmetry axis.

- (i) Along which axis is the 4-fold symmetry?
- (ii) Which are the axis of two 2-fold symmetry?

3b. We consider now the crystal associated with the tetragonal structure



- (i) The tetragonal structure, with one atom per motif as shown in the schematic to the left. What is its Space group ?
- (ii) We consider a configuration where two atoms (blue and red) are part of the crystal as shown on the schematic to the right.
 - a. Is the 4-fold symmetry conserved ?
- (iii) How about the mirror symmetry of the plane perpendicular to the 4-fold axis symmetry ?

Exercise 4: Iron Platinum

Iron-Platinum is a magnetic material that crystallizes in the structure shown. In this structure, we suppose that the Iron atoms sits at the corner of a cube of edge a , as well as at the center of the top and bottom cube faces. Pt atoms sits at the center of the 4 other faces.

The crystal can be formed by translating this cube along the **a**, **b** and **c** orthogonal vectors. On the schematic, two cubes are represented.

- 4a. What is the chemical structure of this material ?
- 4b. Show that the crystal structure is actually tetragonal primitive, and find its lattice parameters as a function of a .
- 4c. Would the symmetries found for the tetragonal structure in questions 2b also be present for this material?
- 4d. What would you expect its space group to be?